Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules.
نویسندگان
چکیده
Activation of dopamine D(1A) receptors in renal proximal tubules causes inhibition of sodium transporters (Na-K-ATPase and Na/H exchanger), leading to a decrease in sodium reabsorption. In addition to being localized on the plasma membrane, D(1A) receptors are mainly present in intracellular compartments under basal conditions. We observed, using [(3)H]SCH-23390 binding and immunoblotting, that dopamine recruits D(1A) receptors to the plasma membrane in rat renal proximal tubules. Furthermore, radioligand binding and/or immunoblotting experiments using pharmacological modulators showed that dopamine-induced D(1A) receptor recruitment requires activation of cell surface D(1)-like receptors, activation of adenylyl cyclase, and intact endocytic vesicles with internal acidic pH. A key finding of this study was that these recruited D(1A) receptors were functional because they potentiated dopamine-induced [(35)S]GTPgammaS binding, cAMP accumulation, and Na-K-ATPase inhibition. Interestingly, dopamine increased immunoreactivity of D(1A) receptors specifically in caveolin-rich plasma membranes isolated by a sucrose density gradient. In support of this observation, coimmunoprecipitation studies showed that D(1A) receptors interacted with caveolin-2 in an agonist-dependent fashion. The caveolin-rich plasma membranes had a high content of the alpha(1)-subunit of Na-K-ATPase, which is a downstream target of D(1A) receptor signaling in proximal tubules. These results show that dopamine, via the D(1)-like receptor-adenylyl cyclase pathway, recruits D(1A) receptors to the plasma membrane. These newly recruited receptors couple to G proteins, increase cAMP, and participate in dopamine-mediated inhibition of Na-K-ATPase in proximal tubules. Moreover, dopamine-induced recruitment of D(1A) receptors to the caveolin-rich plasma membranes brings them in close proximity to targets such as Na-K-ATPase in proximal tubules of Sprague-Dawley rats.
منابع مشابه
Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension.
Since dopamine produced by the kidney is an intrarenal regulator of sodium transport, an abnormality of the dopaminergic system may be important in the pathogenesis of hypertension. In the spontaneously hypertensive rat (SHR), in spite of normal renal production of dopamine and receptor density, there is defective transduction of the D1 receptor signal in renal proximal tubules, resulting in de...
متن کاملHigher basal serine phosphorylation of D1A receptors in proximal tubules of old Fischer 344 rats.
Dopamine (DA) and D1-like receptor agonists promote an increase in Na excretion by means of activation of the D1-like receptor signaling cascade and subsequent inhibition of the Na/H exchanger and Na-K-ATPase in renal proximal tubules. Recently, our laboratory reported that DA and the D1-like receptor agonist failed to inhibit Na-K-ATPase activity in old Fischer 344 rats because of uncoupling o...
متن کاملTrafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells.
Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATP...
متن کاملRosiglitazone restores G-protein coupling, recruitment, and function of renal dopamine D1A receptor in obese Zucker rats.
Hypertension related to insulin resistance results from increased sodium retention. Dopamine, by activating D1A receptors in renal proximal tubules, increases sodium excretion. Recently, dopamine has been shown to augment its own signaling by recruiting intracellular D1A receptors to cell surface in proximal tubules. In this study, we hypothesized that coupling of D1A receptors to G proteins an...
متن کاملRosiglitazone treatment restores renal dopamine receptor function in obese Zucker rats.
Earlier we have reported a defective dopamine D1-like receptor function, which was accompanied by a decrease in D1 receptor numbers and the inability of dopamine to inhibit Na,K-ATPase and Na,H-exchanger in proximal tubules of hyperinsulinemic obese Zucker rats. The present study was designed to test the hypothesis that the defect in dopamine receptor function is a result of hyperinsulinemia in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 287 5 شماره
صفحات -
تاریخ انتشار 2004